Course Objective: To learn the advanced concepts of Parallel and Distributed Computing and its implementation for assessment of understanding the course by the students

Introduction: Scope, issues, applications and challenges of Parallel and Distributed Computing

Principles of Parallel Algorithm Design: Decomposition Techniques, Characteristics of Tasks and Interactions, Mapping Techniques for Load Balancing.

CUDA programming model: Overview of CUDA, Isolating data to be used by parallelized code, API function to allocate memory on parallel computing device, to transfer data, Concepts of Threads, Blocks, Grids, Developing a kernel function to be executed by individual threads, Execution of kernel function by parallel threads, transferring data back to host processor with API function.

Analytical Modeling of Parallel Programs: Sources of Overhead in Parallel Programs, Performance Metrics for Parallel Systems, The Effect of Granularity on Performance, Scalability of Parallel Systems, Minimum Execution Time and Minimum Cost-Optimal Execution Time

Dense Matrix Algorithms: Matrix-Vector Multiplication, Matrix-Matrix Multiplication, Issues in Sorting on Parallel Computers, Bubble Sort and Variants, Quick Sort, Other Sorting Algorithms

Graph Algorithms: Minimum Spanning Tree: Prim's Algorithm, Single-Source Shortest Paths: Dijkstra's Algorithm, All-Pairs Shortest Paths, Transitive Closure, Connected Components, Algorithms for Sparse Graph

Search Algorithms for Discrete Optimization Problems: Sequential Search Algorithms, Parallel Depth-First Search, Parallel Best-First Search, Speedup Anomalies in Parallel Search Algorithms

Laboratory Work: To implement the algorithms with the help of CUDA programming using parallel and distributed programming techniques
Recommended Books: