UCB009 : Chemistry

L	Т	Р	Cr
3	0	2	4.0

Course Objective: The course aims at elucidating principles of applied chemistry in industrial systems, water treatment, engineering materials, computational and analytical techniques.

Syllabus

Atomic and Molecular spectroscopy: Introduction to spectroscopy, principles of atomic absorption, flame emission spectrophotometry and ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy), Quantification by calibration method, Jablonski diagram, fluorescence and phosphorescence, Beer-Lambert's Law, principle and applications of UV-Vis and IR spectroscopy.

Electrochemistry: Background of electrochemistry, Ionic mobility, Conductometric titrations, Modern Batteries: Pb-acid and Li ion battery, Corrosion and its protection.

Water Treatment and Analysis: Physiochemical parameters of water quality, External and internal methods of Softening of water: carbonate, phosphate, calgon and colloidal conditioning, Zeolite process, Ion exchange process, treatment of water for domestic use, Desalination of brackish water: Reverse osmosis & Electrodialysis.

Fuels: Classification of fuels, Calorific value, Cetane and Octane number, alternative fuels: biodiesel, Power alcohol, synthetic petrol, Fuel cells: H_2 production and storage, Water splitting, Rocket propellant.

Chemistry of Polymers: Classification of polymers, tacticity of polymers, molecular weight calculations, Polymers in daily life, conducting, inorganic and biodegradable polymers.

Computers in Chemistry: Introduction to SMILES (Simplified Molecular Input Line-Entry System): Methodology and encoding rules, SMILES notation-chemical structure interconversions and its applications.

Laboratory Work: Electrochemical measurements: Experiments involving use of pH meter, conductivity meter, potentiometer, Spectroscopic technique, Volumetric titrations: Determination of mixture of bases, hardness, alkalinity, chloride and iron content, Application of polymers and SMILES Language.

Course Learning Objectives (CLO)

After completion of this course the students will be able to:

- 1. recognize principles and applications of atomic and molecular spectroscopy.
- 2. explain the concepts of conductometric titrations, modern batteries and corrosion.
- 3. apply and execute water quality parameter and treatment methods.
- 4. discuss the concept of alternative fuels, application of polymers and SMILES.
- 5. Execute laboratory techniques like pH metry, potentiometry, spectrophotometry, conductometry and volumetry.

Text Books

- 1. Engineering Chemistry, S. Vairam and S. Ramesh, Wiley India 1st ed, 2014.
- 2. Engineering Chemistry, K. S. Maheswaramma, and M. Chugh. Pearson, 2016.

Reference Books

- 1. Engineering Chemistry, B. Sivasankar, Tata McGraw-Hill Pub. Co. Ltd, New Delhi, 2008.
- 2. Engineering Chemistry, M.J. Shulz, Cengage Learnings, 2007.
- 3. J. Chem. Inf. Comput. Sci., D. Weininger, Vol. 28, 1988, 31-36.

Evaluation Scheme

MST	EST	Sessional
35	35	30